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Abstract: This paper describes the results from a study designed to illustrate the use of machine
learning analytical techniques from a household consumer perspective. The outcome of interest
in this study is a household’s degree of financial preparedness as indicated by the presence of an
emergency fund. In this study, six machine learning algorithms were evaluated and then compared
to predictions made using a conventional regression technique. The selected ML algorithms showed
better prediction performance. Among the six ML algorithms, Gradient Boosting, kNN, and SVM
were found to provide the most robust degree of prediction and classification. This paper contributes
to the methodological literature in consumer studies as it relates to household financial behavior by
showing that when prediction is the main purpose of a study, machine learning techniques provide
detailed yet nuanced insights into behavior beyond traditional analytic methods.
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1. Introduction

As is the case with nearly all fields of study that fall under the area of the social
sciences, much of the body of knowledge in the field of consumer studies is based on
statistical results from conventional data methodological approaches, with regression
procedures dominating the way researchers attempt to describe variable relationships and
explain phenomena. Traditional regression techniques are designed to identify the marginal
effects of specified and pre-selected factors based on theory and the existing literature.
Conventional analytical techniques have been refined over the past half-century to increase
explanatory power; however, even with advancements, conventional approaches remain
limited in their explanatory power. Factors that might be possibly related to an outcome
of interest, but have not been reported in the literature or thought to be theoretically
relevant, are generally excluded from subsequent analyses. This means that the amount
of explained variance across a wide number and variety of consumer studies outcomes
is inevitably limited.

Big data analytical techniques, which tend to be atheoretical, have increasingly gained
traction across the social sciences to acquire a deeper understanding of human attitudes
and behaviors. Machine learning (ML)—a type of artificial intelligence application—is both
a field of study and an umbrella term that describes algorithms that are built in such a
way that hidden layers of information can be identified through a learning process based
on training data and computational proofs. ML approaches are intended to supplement
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the role of researchers by showing that variables that might have once been discarded
in previous studies or not included at all in an empirical analysis can add insight into
describing and explaining outcomes.

The purpose of this study is to illustrate the use of ML from a consumer studies
perspective to improve data descriptions when compared to a conventional regression
approach. The outcome of interest in this study is a household’s degree of financial pre-
paredness as indicated by the presence of an emergency fund (i.e., a measure based on
household liquidity). As will be discussed later in this paper, numerous researchers have
examined factors associated with holding an emergency fund, explaining the components
of emergency savings, and predicting which households are most likely to meet liquidity
ratio guidelines. A unique feature of much of the existing literature is that regardless of the
research purpose, analysts tend to use similar variables when describing and predicting
household emergency funds. These variables have come to represent the basis of many
consumer-focused financial recommendations. A cursory review of this literature sug-
gests, however, that other variables or relationships among variables is needed to gain
a more comprehensive understanding of consumer financial preparedness to improve
prediction rates.

When asked, financial service professionals, financial counselors, and financial ed-
ucators tend to agree that managing household emergency funds involves the ongoing
management of interacting variables. This is one reason why ecological systemic theory is
prominently mentioned as a key explanatory model when emergency fund analyses are
conducted at the household level [1,2]. As previously mentioned, much of the existing
research has primarily sought to understand emergency funds within the confines of eco-
nomic or financial theories using a delimited number of factors such as financial status or
sociodemographic variables (e.g., [3,4]). While such studies have contributed positively to
the literature by reinforcing existing theories and research findings, they may overlook the
potential relevance of variables highly pertinent to how households manage emergency
funds in practice. Methodologically, this signifies the need for an approach centered on
pattern recognition and classification, as opposed to the identification of linear relationships
upon which conventional studies have been based (e.g., [3–5]). Consequently, the combi-
nation of ecological systemic theory, pattern recognition, and classification underscores
the necessity to consider complex system science models [6,7]. Furthermore, in the context
of the social sciences and economics, where complex system science models are gaining
acceptance, there is a need for research in personal finance utilizing ML techniques [6,8].

This study adds to the existing literature in several important ways. First, it employs
ML in the context of a consumer studies topic. While some prior attempts within the field
have been made (e.g., [9–15]), these efforts have been limited in their ability to compare
various ML methods comprehensively. Another limitation is that some prior studies have
relied on macro, rather than micro or household, data, which produce outcomes that are
disconnected from a household’s actual financial management activities. Consequently,
this study is one of the few initial attempts to explain emergency fund management by
integrating various ML techniques at the household level.

Second, previous studies have been limited to the assessment of a few central variables,
including financial factors and sociodemographic factors, when studying emergency funds
(e.g., [3,4]); this study is more expansive. Specifically, the analyses conducted in this study
relied on a diverse set of variables that align with the research objectives. For instance, in
addition to financial and sociodemographic factors, this study introduces a broad array of
variables, including financial education, psychological factors, COVID-19-related factors,
distance to financial service providers, and types of loans. This approach aligns well with
the strengths of ML, which are designed to enhance predictive capabilities by combining
numerous variables when classifying and describing relationships [16]. This study carries
the potential to discover meaningful variables that have been previously unnoticed in
existing research by supplementing ML predictions with additional variables potentially
related to the management of emergency funds at the household level.
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Third, as mentioned earlier, previous studies have typically assumed that variable
relationships are linear, even when this assumption may not be practically relevant. Rather
than rely on a linear assumption, this study is premised on pattern recognition and classifi-
cation, distinct from models based on linear assumptions. Specifically, this study utilizes six
ML algorithms as complex systems science models. While the six ML methods in this study
have been widely used in empirical studies, their application in comparison to traditional
linear assumption-based analytical methods is limited, particularly in relation to personal
finance and consumer studies topics.

In summary, this paper contributes to the methodological literature in consumer
studies by showing that when prediction is the main purpose of analysis (i.e., for use
when making policy, creating education interventions, and advice giving), conventional
analytical techniques may not always be the best solution. ML incorporating a larger set
of variables that accounts for interactions between and among factors can offer a more
robust and powerful way to increase predictive validity. In this regard, the research
questions associated with this study are (a) What is the optimal ML algorithm to predict
the presence of an emergency fund? (b) How do ML predictions perform when compared
to a conventional logistic regression analysis? and (c) What are the most important factors
associated with holding an emergency fund when viewed with an ML algorithm lens?

This study consists of sub-sections to arrive at the answer to these questions and
deliver contributory points. Section 2 includes a background discussion about emergency
funds and the methodological background of ML. Section 3 introduces the empirical model
based on the background and methodological review. Section 4 describes the data and
measurements utilized in the ML and logistic models. Section 5 illustrates the findings
from each ML and the logistic model. Section 6 discusses the results. This paper concludes
by describing this study’s implications in Section 7.

2. Background
2.1. Household Emergency Funds

The ability of households to pay for unexpected emergencies and situations associated
with unanticipated unemployment is a topic of interest to those who study and research
consumer issues [17]. Household financial ratio analysis originates in consumer studies
research that began in earnest in the last two decades of the 20th century. Johnson and
Widdows [18] are generally given credit for being the first to adapt traditional business val-
uation ratios for use with households [19]. The liquidity ratio, also known as the emergency
fund ratio, appears prominently in the early literature as a marker of household financial
preparedness. Prather and Hanna [20] were among the first to publish standards and norms
associated with the liquidity ratio, which is defined as the number of months a household
can viably meet expenses in an emergency. The most commonly applied liquidity ratio
formula is: Liquid Assets/(Minimum Monthly Fixed + Monthly Variable Expenses). The
ratio indicates the number of months a household can weather an emergency. According
to Lytton et al. [19], a household’s goal should be to maintain an emergency fund equal
to three months of living expenses (see also [21]). Based on this guideline, it has been
estimated that less than one-third of U.S. households can adequately meet a financial
emergency [22].

Gaining a unified understanding of the factors associated with holding an emergency
fund that meets the liquidity ratio guideline can be complicated. Hanna et al. [23] noted that
savings can be influenced directly by a household’s stage in the lifecycle, which implies that
the role of certain variables in describing savings patterns may differ across the lifecycle.
Lifecycle theory suggests that households that expect higher income uncertainty should al-
locate more assets to precautionary saving [24]. Beyond anticipatory behavior, the literature
also indicates that a number of personal and household characteristics are associated with
an adequately funded emergency account. Bi and Montalto [22] reviewed the literature
and they found age, education, income, race/ethnicity, spending behavior, risk tolerance, a
willingness to borrow, holding negative economic expectations, motivation, diversification
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of household income, the presence of other savings (e.g., retirement accounts), home equity,
and available lines of credit provide needed information when attempting to describe who
does or does not hold an emergency fund. In their study, Bi and Montalto concluded that
the ability to save was more important than documenting a need to save when explaining
emergency fund holdings. Others have identified factors such as financial confidence and
financial knowledge as important when explaining emergency fund saving behavior.

2.2. An Introduction to Machine Learning

As the previous discussion highlights, the literature describing the characteristics
associated with household emergency fund holdings has a long and robust history. Almost
all previous studies that have been undertaken to describe the characteristics associated
with holding emergency funds have been conducted using conventional linear-based
modeling techniques. What has emerged from this literature is a common set of factors that
are thought to be associated with the decision to build and maintain emergency fund assets
(see [22]). An important caveat when evaluating the existing literature is the general lack of
a description of the effect sizes of significant variable associations and very little discussion
regarding the degree of model-explained variance. A careful examination of existing studies
shows that while all the models described in the literature are statistically significant, the
amount of explained variance rarely exceeds 40%. This means that other variables (or
variable relationships) that have yet to be identified or used in models contribute significant
explanatory power. What these variables are or how these variables interact is yet unknown.

Researchers are increasingly using ML techniques because it is now known that artifi-
cial intelligence algorithms can provide a deeper insight into the mechanisms underlying
human attitudes and behaviors. ML algorithms can be used to identify what are sometimes
referred to as hidden layers within data. Within these hidden layers are functions that
may not be linearly related to the outcome of interest but are, nonetheless, important
when viewed holistically in combination with other variables in a network [6]. A now
ubiquitous example illustrates how hidden layers and networks perform in practice. In
this example, assume a researcher wants to understand how people identify faces when
viewed as an image. When the researcher shows study participants extracts of a subject’s
face (e.g., one eye, a tooth, nose), the researcher finds that these independent factors fail to
reach statistical significance and thus do not provide enough information to describe a face
accurately. In this example, the researcher wrongly concludes that people fail to use some
visual cues when creating descriptions. What a person actually does is compile, through
hidden layers of analyses, all relevant snippets of information to derive an identification.
A single viewpoint cannot provide enough information to build a valid description, nor
can eliminating some pieces of information improve validity. Similarly, researchers relying
solely on conventional linear statistical techniques may inadvertently dismiss variables as
irrelevant or unimportant when describing or predicting a social science outcome. Some
researchers may dismiss potential explanatory variables altogether. Like limited pictorial
extracts used when describing a face, traditional analytical techniques rarely provide more
than a rough outline of an outcome or phenomenon.

This is where ML adds explanatory power beyond what can be obtained from most
conventional data analysis methodologies. Kudyba and Kwaitinetz [25] and Thompson [26]
described ML as improving classification by identifying patterns within large datasets.
ML is generally used when a project aims to improve predictions. As with any statistical
approach, the reliability of ML protocols depends on the data source and how variables
are coded [27]. Numerous ML algorithms and models have been proposed and tested
over the past two decades. Examples of early ML approaches include Naïve Bayes, Linear
Discriminant Analysis, logistic regression, k-Nearest Neighbors, decision trees, Supportive
Vector Machine, adaptive boosting, and Gradient Boosting methodologies. It is important
to note that ML approaches do not always outperform conventional approaches. When
an outcome is measured continuously, linear, polynomial, lasso, and ridge regressions
sometimes provide a more robust level of prediction compared to more complex ML
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techniques. According to Abiodun et al. [28], however, the sophistication of ML approaches
has increased exponentially over the past decade, resulting in increasingly higher levels of
reliability and robust prediction levels.

In this study, six ML algorithms are introduced and tested using the Orange package
with Python [29] and then compared to predictions made using a conventional regression
technique. The algorithms evaluated in this study included (a) k-Nearest Neighbor (kNN),
(b) Gradient Boosting, (c) Naïve Bayes, (d) Support Vector Machine (SVM), (e) Stochastic
Gradient Descent (SGD), and (f) Neural Networks (NN) (for more information about these
techniques, see [28,30–32]). By comparing these six ML techniques, this study adds to the
consumer studies methodology literature by illustrating how hidden connections can bring
new and interesting variable associations that describe and predict consumer attitudes and
behaviors to light.

2.3. Methodological Background: Machine Learning (ML) Algorithms and Their Applications in
Financial and Consumer Research

As noted above, six ML algorithms were tested in this study. More than one algorithm
was chosen because the literature shows that each offers unique advantages and disad-
vantages. A particular ML algorithm may perform well when the outcome is financial
distress or bankruptcy but perform less well when applied to a credit scoring situation. The
following discussion reviews the six ML algorithms tested in this study.

2.3.1. k-Nearest Neighbor (kNN)

As the name implies, kNN utilizes instance-based learning as a classification tool [33,34].
Instance-based learning means that the algorithm utilizes the vector space (i.e., space between
objects) model, which makes kNN different from other classification algorithms. Because it
relies on the vector space model, kNN can be utilized with cross-sectional data [35]. Various
approaches can be used when assessing vector space [36]. When the outcome variable is
categorical, Hamming distance can be utilized as shown in Equation (1):

Hamming distance = ∑I
i=1 Int(xi ̸= yi) (1)

where i indicates each observation; I is a set of observations i; xi and yi are the predictor
and the outcome value with ith observation. When the outcome variable is a continuous
variable, Euclidean distance, using the root of squared differences among observed samples,
can be applied [37], or the Manhattan distance, using the absolute value of differences, can
also be utilized as shown in Equations (2) and (3).

Euclidean distance =

√√√√ I

∑
i=1

(xi − yi)
2 (2)

Manhattan distance =
I

∑
i=1

|xi − yi| (3)

The combination of predictors and the outcome can be shown as (xi,yi) where i means
the ith observation from the data (i = 1, 2, 3, . . . I). By using ascending order of distance,
the observations can be allocated on a matrix as d(x1, y1) ≤ · · · ≤ d(xi, yi), where d is
the distance from Equations (1), (2), or (3). When the outcome variable is categorical, the
most frequent occurrence indicates the highest probability of belonging to the category
shown in Equation (4). By using the probability, the expected category of the outcome is
the maximum value from Function (4), as indicated in Equation (5):

p̂k =
∑I

i=1(yi=k)
∼
i

(4)
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ŷ = argmaxp̂k (5)

where a predictor is a categorical variable from 1 to K, k means the kth category; p̂k is the
probability to be founded; and i is observed as the optimal observation (ith). In the case
that the outcome variable is a continuous variable, a certain number of observations are
selected (n = i) from d(x1, y1) ≤ · · · ≤ d(xI , yI). The selected observations are utilized to
calculate the inverse distance weighted average, which produces the predicted value of an
outcome from Equation (6):

ŷ =
∑I

i=1
1

d(xi ,x)
yi

i
(6)

As a classification algorithm, kNN is widely used for forecasting underweighted regres-
sion conditions. When kNN is combined with fuzzy vectoring, Östermark [38] suggested
that kNN can be a useful tool for detecting data outliers, specifically when forecasting using
finance and economic datasets. Because of the usability of kNN when making forecasts,
this classification method has been adopted in various financial studies [39]. For instance,
Meng et al. [33] adopted kNN to predict internet financial risk. They found an optimal
number of categories for internet financial institutions. Phongmekin and Jarumaneeroj [40]
utilized various algorithms (i.e., logistic regression, decision trees, Linear Discriminant
Analysis, and kNN) to forecast stock exchange returns in Thailand. They found that kNN
offers the best performance when predicting stock returns.

2.3.2. Gradient Boosting

Gradient Boosting was introduced by Breiman [41], which was then merged with
a regression algorithm developed by Friedman [42]. Gradient boosting is an ensemble
modeling technique that combines classification and regression methods [42,43]. As the
term ‘boosting’ implies, weak patterns from a dataset can be strengthened through a
learning process when the goal is to find the highest probability of prediction [38]. ‘Gradient’
means an error from each strengthened stage gradually decreases until the lowest error level
is reached [44]. The basic learning process begins by measuring the error (i.e., residuals)
between a predicted value and an observed value [45], as shown in Equation (7), which is
called a loss function:

l(yi, f (xi)) =
1
2
(yi − f (xi))

2 (7)

where i is the ith observation. The negative gradient format of Equation (7) produces
residuals like those in Equation (8), which is a derivative of l(yi, f (xi)):

− δ(yi, f (xi))

δ f (xi)
= yi − f (xi) (8)

As shown in Equation (8), the negative gradient produces a function similar to that
of a regression residual (i.e., the difference between the predicted outcome and the actual
outcome), which is how the name Gradient Boosting originated. Until the residuals are
minimized, Gradient Boosting is iterated to make weak learners be combined, as shown in
Equation (9):

ŷ = f (x) = ∑K
k=1 Lk + e (9)

where k indicates each predictor; K is the optimal number to minimize the residual; and
Lk is each different weak learner. Usually, the weak learner is a tree model developed
using a predictor.

In practice, there are multiple types of Gradient Boosting, including categorical Gra-
dient Boosting, scikit-learn Gradient Boosting, Extreme Gradient Boosting, and Extreme
Gradient Boosting with random forest. Categorical Gradient Boosting utilizes features as
categories [46]. Scikit-learn gradient boosting is a type of Gradient Boosting algorithm
offered in Python (https://scikit-learn.org/stable/ accessed on 1 November 2023), whereas

https://scikit-learn.org/stable/
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Extreme Gradient Boosting is the most recent version of Gradient Boosting [9,47]. Each
method was evaluated in this study.

The use of Gradient Boosting fits well with the research of interest in this study. Gradi-
ent Boosting is an ensemble model, which makes it particularly useful when conducting
finance and business analyses [10,15]. Consider the work of Zhang and Haghni [15]. They
utilized Gradient Boosting to improve travel time prediction in the transportation business.
Specifically, they compared autoregressive integrated moving averages, random forest,
and Gradient Boosting and concluded that Gradient Boosting showed better performance
prediction. Guelman [10] investigated loss costs from Canadian insurers by comparing
Gradient Boosting and a generalized linear model. Gradient Boosting was found to offer
better performance in terms of prediction. Gradient Boosting has also been utilized in
credit analyses. For instance, Chang et al. [44] compared various ML algorithms (i.e., group
method of data handling, logistic, SVM, and Extreme Gradient Boosting). They observed
Extreme Gradient Boosting to have outstanding performance when predicting credit risk.
The approach has also been used to predict financial distress. Liu et al. [45] compared
logistic, random forest, NN, SVM, and Gradient Boosting and noted that Gradient Boosting
outperformed financial distress predictions. Carmona et al. [9] found the most impactful
factors associated with bank failures using Gradient Boosting. Specifically, they compared
bank failure prediction performance across logistic, random forest, and Extreme Gradient
Boosting. They noted that Gradient Boosting provided the most meaningful insight when
understanding bank failures.

2.3.3. Naïve Bayes

As the name implies, Naïve Bayes relies on Bayes’ theorem; sometimes researchers
refer to the approach as Bayes or independent Bayes [48]. In practical applications, Naïve
Bayes is useful for clustering and classification purposes [49]. All variables or features in
a prediction model are assumed to be independent [50]. Naïve Bayes utilizes conditional
probability modeling by combining various predictors ( Xk ∋ x1, x2, . . . , xk) with a set of
probabilities (p(Cm|Xk)), where k is the number of predictors and m means the number
of probabilities found. Because Naïve Bayes assumes the independence of all predictors,
the maximized probability of having a certain value (or category) can be found using
Equations (10) and (11):

p(Cm|Xi) =
1
Z

p(Cm)∏K
k=1 p(xk|Cm) (10)

ŷ = argmaxm∈{1,...,M}p(Cm)∏K
k=1 p(xk|Cm) (11)

Some researchers have criticized the approach because the independent assumption
is unnatural and unrealistic [51]. This is the reason that the approach is termed naïve.
However, because of the assumption of independence, Naïve Bayes offers a mathematical
transformation advantage, making the dataset analysis more predictable [51].

Naïve Bayes has been utilized in various financial studies as a classification algorithm.
Jadhav et al. [12] compared the efficacy of SVM, kNN, and Naïve Bayes as algorithms
to predict credit ratings. After comparing the algorithms, they concluded that Naïve
Bayes performed best. Deng [52] utilized Naïve Bayes to detect fraudulent financial state-
ments in auditing. Deng noted that Naïve Bayes can provide unique insights. Similarly,
Viaene et al. [14] utilized Naïve Bayes to detect financial fraud (i.e., consumers’ faulty
insurance claims). They concluded that the approach can improve prediction rates. Naïve
Bayes has also been utilized in text classifications, such as when conducting a finan-
cial news analysis. Shihavuddin et al. [53] collected news articles about the Financial
Times Stock Exchange 100 (FTSE100). Using Naïve Bayes, they concluded that not only
does Naïve Bayes improve classification, but the approach can also be used to predict
stock prices.
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2.3.4. Support Vector Machine (SVM)

SVM classification is based on the concept of a hyperplane, which combines two sepa-
rate classes [30]. The easiest way to understand classification by SVM is that a hyperplane
is drawn among total samples. By drawing the hyperplane, two separate groups can be
identified (e.g., upper and lower hyperplanes) as shown in Equations (12) and (13):

y = 1, when [B∑ xk + a] > 0 (12)

y = −1, when [B∑ xk + a] < 0 (13)

where k means each predictor and a is the constant in each hyperplane. Because of the
complexities built into most datasets, the hyperplane is generally not well specified. There-
fore, SVM sets the hyperplane by considering the maximum margin, the nearest vector
from the potential hyperplane [54]. To draw a hyperplane when the maximum margin is
found (Max M), SVM secures the optimal prediction performance. The function is shown
in Equation (14), where B and a are assumed to be 1.00:

Max M, where yk
(

B∑ xk + a
)
≥ M (14)

In addition to a hyperplane and maximum margin in SVM, kernel functioning is often
used to help classify samples when the dataset and vectors are highly dimensional [54].
Because one straight hyperplane cannot easily be optimally identified when the dataset is
highly dimensional, different types of hyperplanes can be utilized, including linear (i.e.,
straight), polynomial, radial basis function (RBF), and sigmoid. These types function in the
hyperplane, called a kernel [30]. In the current study, four types of kernels were utilized.

SVM has been utilized widely in credit risk studies [55]. For example, the approach
has been employed to predict credit scores [56,57]. Baesens et al. [58] compared various
algorithms (i.e., SVM, logistic, discriminant analysis, kNN, Neural Networks (NN), and
decision trees) to predict credit scores. They found that SVM and NN showed the best
prediction performance compared to the other algorithms. Yang [59] introduced an adaptive
credit-scoring system using a kernel-based SVM. Yang noted that the non-linear feature
of datasets can be managed through kernel transformation. Kim and Ahn [60] utilized
various ML algorithms (i.e., multiple discriminant analysis, multinomial logistic analysis,
case-based reasoning, and an artificial neural network) to examine corporate credit rates.
They found that SVM outperformed in detecting multiclass classification of corporate
credit ratings. Similar findings have been reported by Chaudhuri and De [61], Chen and
Hsiao [62], and Hsieh et al. [63] when making bankruptcy and financial distress predictions.

2.3.5. Stochastic Gradient Descent (SGD)

SGD emerged as an extension of previous theories, including the theory of adaptive
pattern classifiers [64,65]. SGD is primarily used to help with data classifications. SGD
begins by minimizing the errors (i.e., residuals) between predicted and observed values [66].
Specifically, SGD employs multiple iterations to minimize the errors in each gradient
step [67] using Equation (15):
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; and η is the size of the learning rate. By repeating Equation (15), the parameters
to minimize the value of the loss function can be estimated. SGD is popular because
it is mathematically tractable and scalable [67]. Researchers like SGD because it helps
solve optimization issues through stochastic approximation [68]. Because SGD relies on
minimizing errors, regularization needs to be considered. Ridge and lasso are popular
regularizations [69]. Elastic regularization can also be utilized [70]. The SGD approach can
be employed when pre-selection or the transformation of explanatory variables is required
and in situations where predictive machine learning scenarios are needed. The technique
showcases robustness against outliers, as the steepest gradient algorithm emphasizes
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the correct classification of data points closely aligned with their true labels. As such,
SGD extends beyond a mere method for optimizing objective functions with appropriate
smoothness properties. SGD applies to a diverse set of machine learning prediction methods
(e.g., [71,72]).

Similar to the other ML algorithms, SGD has been used in various consumer and
finance studies. Deepa et al. [69] utilized SGD to predict the early onset of diabetes.
Compared to logistic models, SGD showed a better prediction outcome. Using SGD
algorithms, they noted that SGD can be used to enhance prediction rates.

2.3.6. Neural Networks (NN)

NN is unquestionably the most mature of all algorithms within the ML area. NN
offers flexibility when attempting to make classifications and when the goal of a project is to
engage in future pattern recognition [25,26]. The uniqueness of NN is the approach’s use of
neurons as hidden layers. Neurons resemble the human brain architecture [73]. Because of
the unique architecture, all inputs (i.e., features or variables) are assumed to be connected
to all neurons. All neurons are also assumed to be connected to all expected outcomes [6].
The basic function of NN is shown in Equation (16):

y = a(∑K
k=1 wkxk + e) (16)

where k denotes the predictors; wk is each predictor’s weight; and a is e bias like the
error terms. Because of the complex connectivity through neurons between inputs and
outcomes, NN can be expected to improve the prediction rate of outcomes. For instance, if
five variables are used as inputs to predict two outcomes, employing four neurons, then
there are 20 connections between the five variables and four neurons and an additional
eight connections between the four neurons and two outcomes. This interconnectedness
means 160 possible pathways from the five variables to the two outcomes through the
four neurons. As this example illustrates, neurons make all connectivity from inputs to
outcomes so that the prediction of outcomes can be improved.

The first step when conducting an NN analysis is to define the optimal number of
neurons. Because NN can employ any possible number of neurons, the number of neurons
should be tested first to find the best performing model [74]. In this study, the number of
neurons was first tested, and then the optimal number of neurons was employed in the
final model.

As noted above, NN is a very popular ML technique. NN has been utilized to
predict credit scores and other consumer behaviors. Baesens et al. [58] compared various
algorithms, including SVM, logistic, discriminant analysis, kNN, NN, and decision trees,
to conclude that SVM and NN show the best prediction performance compared to the
other algorithms. Some researchers have utilized NN to detect financial fraud (e.g., fraud
reporting, fraudulent use of credit cards, fraudulent financial statements, fraud claims)
(e.g., [74–76]), whereas others have utilized NN for the prediction of bankruptcy and
financial distress [57,77,78]. Heo et al. [11] applied NN to predict the savings-to-income
and debt-to-asset ratios among U.S. households. They compared the prediction accuracy
between NN and conventional regression models and found that NN provides a deeper
and more meaningful insight into the savings-to-income ratio and the debt-to-asset ratio.

2.3.7. Comparison Analysis

As alluded to in the preceding discussion, it is common for researchers to check
whether ML algorithms enhance predictions by comparing outcomes to the results gen-
erated from a conventional analytic tool. When the outcome variable is binary, a logistic
regression model [79] is most often the comparison. A logistic regression model can be
estimated from Equation (17):

ln
(

p(x)
1 − p(x)

)
= a + ∑K

k=1 xk (17)
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where k denotes the predictors. This approach was taken in this study. Specifically, the
ML algorithms’ predictions were compared to those predictions made using a maximum
likelihood logistic regression.

3. Empirical Model Flow
3.1. Research Purpose and Analysis Structure

The overarching purpose of this study was to determine which modeling technique
offers the best prediction rate when describing the presence of an emergency fund. As
noted above, this study employed and compared various ML algorithms. A four-step
analytical process was used, and the steps are described below.

Step 1: Find the best parameters across the various ML algorithms
Multiple sub-algorithms exist within nearly all ML algorithms (Naïve Baynes is an

exception). For instance, in terms of kNN, the Euclidean method and the Manhattan method
can be used to measure distance. For Gradient Boosting, four sub-algorithms are widely
used: categorical, Extreme, Extreme with random forest, and scikit-learn. In the case of
SVM, the kernel can be assumed to be linear, polynomial, RBF, or sigmoid. Three sub-
algorithms exist for SGD (i.e., elastic, lasso, and ridge). At this step of the analytical process,
each sub-algorithm was tested. For the conventional analysis (i.e., logistic regression), three
types of feature selection were utilized (i.e., all variables, forward stepwise selection, and
backward stepwise selection).

In addition to sub-algorithms, each ML algorithm can be affected by internal settings
(i.e., parameter settings). Based on the parameter setting, the same algorithm may exhibit
different degrees of performance robustness [80]. To account for this possibility, this study
tested different parameters for each algorithm. For kNN, normally, the number of neighbors
can affect classification performance. Therefore, different numbers of neighbors (i.e., from
1 to 100) were employed and compared to find the best tuning for the kNN algorithm.
Regarding Gradient Boosting, the learning rate may affect the algorithm’s performance.
As such, various learning rate settings (i.e., 0.10, 0.15, 0.20, 0.25, and 0.30) were employed
and compared to find the best application. For SVM, cost values are known to affect
classification performance. To account for this, different cost values (i.e., 0.10, 1.00, 5.00,
10.00, 50.00, and 100.00) were employed and compared. It is also known that in terms of
SGD, the learning rate may affect the algorithm’s performance. To deal with this possibility,
various learning rate settings (i.e., 0.001, 0.005, 0.010, 0.050, and 1.000) were employed
and compared. For NN, the number of neurons can change the algorithm’s performance.
Therefore, different settings of neurons (i.e., 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70,
75, 80, 85, 90, 95, and 100) were utilized and compared to find the best performance outcome.
As shown in Figure 1 (Part A and Part B and Line a), the first step in the analysis involved
selecting the best performing sub-algorithms and the best tuning for each algorithm.

Step 2: Find the best ML prediction algorithm among the various ML algorithms
It is important to note that assuming that one specific ML algorithm will ever show

a dominant performance across predictions and classifications is unrealistic. Rather, by
the topical issue type and the predictive dataset’s nature, diverse ML algorithms can be
expected to show better/worse prediction and classification performance [27]. Given the
binary feature of the dependent variable in this study, various classification algorithms
were selected, as explained above. As shown in part A with line b in Figure 1, the second
step in the analytical process involved finding the optimal ML algorithm from the selected
six ML algorithms. The best prediction performance was selected as the most appropriate
for use within the dataset.

Step 3: Check whether ML accuracies are higher than those offered by a conven-
tional analysis

Even if a selected ML algorithm shows excellent performance across tested ML al-
gorithms, the prediction function may actually offer a lower level of prediction when
compared to a conventional analytical technique like logistic regression. Therefore, the
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third step involves comparing the prediction performance of the selected ML algorithm
and the conventional analysis (see parts A and B with line b, Figure 1).

Step 4: Determine which factors are associated with holding an emergency fund
Assuming the selected ML algorithm performs better than the conventional analysis,

the influencing rank of input factors can be found by evaluating algorithm outcomes. The
influencing rank can be viewed similarly to the significant variable list from a regression
model, or the rank can differ. By checking the similarity or differences between the rank
of influencing factors (ML algorithm) and the significant factors (logistic regression), it is
possible to establish variable importance and possible linkages across variables that can
then be examined at a later date. This step in the analytical process is crucial because some
variables that emerge from an ML algorithm may not be significant in a traditional sense.
Therefore, as shown in Figure 1 (line c for both parts A and B), the final step involves
checking the variable list generated from the ML algorithms and the logistic analysis.
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3.2. Analytic ML and the Conventional Analysis Process

Each ML algorithm test was conducted by dividing the sample into a training dataset
and a test dataset. As shown in Figure 2, using the training dataset, each ML algorithm
was used to identify the best prediction model. Data were split into training and testing
datasets using a 50:50 random split ratio. As noted by Joseph [81], the split ratio varies
by study and typically ranges from 80:20 division, 70:30, 60:40, and 50:50. The literature
shows a conspicuous absence of definitive guidelines delineating the optimal or preferred
data split ratio for a given dataset. As such, based on the comparatively small size of the
dataset used in this study, the research team concluded that a 50:50 ratio was appropriate
(see also [82,83]). Moreover, this ratio split allowed for robust validation of the data (i.e.,
k-fold validation). After a model was identified, the test dataset was utilized to validate the
results from the test. If the model still showed a robust prediction outcome, the model was
defined as optimal. The Python with Orange 3 visualization tool was used for all the tests.
The conventional analysis utilized a similar procedure. A logistic regression model was
estimated utilizing the training dataset. Results were validated using the test dataset. Stata
17.0 was used to estimate the models.
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3.3. The Accuracy Estimation Method

To measure prediction accuracy, a receiver operator characteristics curve (ROC curve)
and the area under the ROC curve (AUC) methodological approaches were utilized. An
ROC curve is produced using two inputs: a true positive (TP) rate and a false positive (FP)
rate [84]. The TP rate is calculated as the ratio between positive (i.e., correct) classifications
and total positives. The FP rate is calculated using the ratio between negative (i.e., incorrect)
classifications and total negatives. This indicates a more precise estimate when the TP rate
is close to 1.00. The approach is also more precise when the FP rate is close to zero. An ROC
curve shows the TP rate on the vertical axis and the FP rate on the horizontal axis. When
an ROC curve shows a convex shape upward to the left, the accuracy is considered to be
more precise. Additionally, the area under the curve is called the AUC, which indicates the
power of the ROC (i.e., measured as 0.00 to 1.00) [44]. If the ROC curve has a vertical axis
with a TP rate (i.e., zero to 1.00) and a horizontal axis with a FP rate (i.e., zero to 1.00), the
area can be calculated from zero (zero times zero) to 1.00 (one times one).

3.4. The Factor Ranking Method

In Step 4, the rank of variables, in terms of prediction, is represented numerically
(i.e., RReliefF). Whereas predictors in a logistic analysis can be evaluated using signifi-
cance/insignificance estimates and marginal effects (i.e., coefficients), identifying high-
ranking predictors using ML algorithms is more complex. For example, in the case of NN,
all input variables connect to the outcome variable through neurons. Multiple weights are
connected between a particular input variable and the outcome variable. There is not a
specific number. As such, the evaluation of ML algorithms tends to focus on the complex
combinations of input factors and the effects of variables on an outcome variable instead of
the unique association between an input variable and the outcome variable.
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For this study, variable ranks were identified using RReliefF. RReliefF is an advanced
version of Relief [85] and ReliefF [86], which are generally accepted attribute estimators.
Relief is the baseline of RReliefF. Robnik-Šikonja and Kononenko [87] introduced RReliefF,
which was developed from Relief. The diff function, as shown below, can be used to better
understand the baseline of RReliefF. The diff function is used to measure the distance
among instances, which can be used to identify the nearest neighbors [87]. Equation (18) is
used for categorical attributes, and Equation (19) is for continuous attributes:

di f f (A, I1, I2) =

{
0; value (A, I1) = value (A, I2)

1; otherwise
(18)

di f f (A, I1, I2) =
|value (A, I1)− value (A, I2)|

max(A)− min(A)
(19)

These equations are used when investigating a dataset that comprises multiple exam-
ples, denoted as I1, I2, ..., In, situated within an instance space. Each example is charac-
terized by a set of attributes, represented as Ai, where attributes are associated with each
example. By using the diff function, the weight (W) of attribute A can be estimated as Relief
by following Equation (20) [86]
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Compared to other attribute estimators (e.g., the root mean of squared error and 

mean absolute error), the RReliefF estimator uses a factor measured by considering inter-

actions with other factors. RReliefF measures a factor’s estimator contextually. A higher 

RReliefF number for a specific variable indicates that the factor is expected to predict the 

outcome with better (optimized) performance. Therefore, in this study, RReliefF was used 

to check the factors’ ranking. 

4. Data and Measurement 

4.1. Data 

Data were collected in 2021 using an online survey distributed in the United States. 

A survey agency invited 5900 consumer households to participate in this study; 1000 re-

spondents answered all the questions; however, 13 respondents provided inaccurate in-

formation (e.g., reporting two years old for their age), which resulted in a useable sample 

of 987. Descriptive information for the sample is shown in Appendix A Table A1. 

Based on the fundamental Relief framework, regressional ReliefF was introduced
using Equation (21):
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Compared to other attribute estimators (e.g., the root mean of squared error and mean
absolute error), the RReliefF estimator uses a factor measured by considering interactions
with other factors. RReliefF measures a factor’s estimator contextually. A higher RReliefF
number for a specific variable indicates that the factor is expected to predict the outcome
with better (optimized) performance. Therefore, in this study, RReliefF was used to check
the factors’ ranking.

4. Data and Measurement
4.1. Data

Data were collected in 2021 using an online survey distributed in the United States. A
survey agency invited 5900 consumer households to participate in this study;
1000 respondents answered all the questions; however, 13 respondents provided inac-
curate information (e.g., reporting two years old for their age), which resulted in a useable
sample of 987. Descriptive information for the sample is shown in Appendix A Table A1.

4.2. Measurement

The outcome variable was whether a respondent held an emergency fund or not. The
variable was coded dichotomously (Have = 1; Not have = 0) based on an answer to the
following question, “Have you set aside emergency or rainy day funds that would cover your
expenses for three months, in case of sickness, job loss, economic downturn, or other emergencies?”.

The input variables (i.e., predictors) were split into the following five categories in
alignment with [88] and [89]: (a) financial statements and resources, (b) financial literacy
and education, (c) psychological factors, (d) demographic factors, and (e) COVID-associated
factors (used to account for the period of data collection).

The following binary-coded variables comprised the financial statements and resources
category: (a) have auto loan or not; (b) have student loan or not; (c) have farm loan or not;
(d) have equity loan or not; (e) have mortgage loan or not; (f) own house or not; (g) have
saving account or not; (h) have checking account or not; (i) own term life insurance or not;
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(j) own whole life insurance or not; (k) ever use payday loan; and (l) have health insurance
or not. In addition, a categorical variable was included to account for the possibility of
receiving financial advice for making financial decisions (i.e., 1 = have; 2 = do not know;
3 = no). Finally, a respondent’s physical distance from their closest financial professional
was asked and coded as follows: 1 = less than 5 miles; 2 = 5 to 10 miles; 3 = 10 to 20 miles;
4 = 20 to 50 miles; 5 = over 50 miles; and 6 = n/a or do not know.

Three variables comprised the financial literacy and education category: (a) had
financial courses in high school (1 = Yes; 0 = otherwise); (b) had financial courses in college
(1 = Yes; 0 = otherwise); and (c) objective financial literacy. The objective financial literacy
variable was based on answers to three true/false questions [90], resulting in scores that
could range from 0 (no correct answers) to 3 (all correct answers).

The psychological factors category was comprised of the following variables:
(a) financial risk tolerance; (b) financial satisfaction; (c) financial stress; (d) financial self-
efficacy; (e) locus of control; (f) life satisfaction; (g) the Rosenberg self-esteem scale; and
(h) job insecurity. Financial risk tolerance was assessed using the Grable and Lytton’s
risk-taking propensity scale [91]. Scores ranged from 13 to 42. Financial satisfaction was
measured using seven items on a five-point scale (min = 7; max = 35) (see [92]). Financial
stress was measured using 24 items on a five-point scale (min = 24; max = 120) (see [88]).
Financial self-efficacy was measured using six items, also on a five-point scale (min = 6;
max = 30) (see [93]). Locus of control was measured using seven items on a five-point scale
(min = 7; max = 35) (see [94]). Higher scores were representative of an external locus of
control. Life satisfaction was measured using seven items on a seven-point scale (min = 5;
max = 35) (see [95]). Self-esteem was measured with Rosenberg’s 10-item scale that was
assessed using a four-point scale (see [96]). Finally, job insecurity was measured using
seven items on a five-point scale (min = 7; max = 35) (see [97]).

Demographic factors included (a) a variable representing the region of the country
where a respondent lived, (b) work status, (c) agricultural working status, (d) education
level, (e) marital status, (f) gender, (g) age, (h) whether a respondent lived in an urban
area, (i) ethnicity, (j) income level, (k) number of children in a respondent’s household,
and (l) perceived health status. The region represented a respondent’s state of residence.
Work status was coded categorically as 1 = Full-Time; 2 = Part-Time; 3 = Self-Employed;
4 = Homemaker; 5 = Full-Time Student; and 6 = Not Working. Agriculture working status
was coded as a categorical variable (1 = farm; 2 = ranch; 3 = agri-business; and 4 = not
working in agriculture). Education level was coded categorically as 1 = high school or
lower; 2 = some college; 3 = college; and 4 = postgraduate. Gender was coded as female
or otherwise. Marital status was coded as a binary variable (i.e., single or otherwise).
Age was measured in years. Living in an urban area was coded categorically as follows:
1 = urbanized area of 50,000 or more people; 2 = suburban area, near urbanized area
with at least 2500 and less than 50,000 people; and 3 = rural area, all population, housing,
and territory not included within any urban areas). Ethnicity was coded as a categor-
ical variable, where 1 = White or Caucasian; 2 = Hispanic or Latino/a; 3 = Black or
African American; 4 = Asian; 5 = Pacific Islander/Native American or Alaskan Native; and
6 = Other. Income level was coded categorically as 1 = Less than USD 15,000; 2 = USD
15,000 to USD 25,000; 3 = USD 25,000 to USD 35,000; 4 = USD 35,000 to USD 50,000;
5 = USD 50,000 to USD 75,000; 6 = USD 75,000 to USD 100,000; 7 = USD 100,000 to USD
150,000; and 8 = Over USD 150,000. The number of children living in a respondent’s
household was measured as a reported number. Finally, the perceived health status of a
respondent was measured as a categorical variable (i.e., 1 = Excellent; 2 = Good; 3 = Fair;
and 4 = Poor).

Finally, COVID factors were measured with items that asked how a respondent was
affected by the COVID-19 virus and pandemic, how long a respondent expected the COVID-
19 pandemic to last, and the receipt and timing of a stimulus check. The following items
were used to evaluate perceptions of the COVID-19 pandemic: (a) how a respondent’s
financial situation was affected by COVID-19; (b) how a respondent’s health condition
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was affected by COVID-19; (c) how a respondent’s general well-being was affected by
COVID-19; and (d) how a respondent’s work–life balance was affected by COVID-19.
Answers were coded as 1 = almost no impact to 4 = serious impact. Perceptions about
the duration of the pandemic were assessed by asking if (a) my financial situation will get
better, get worse, or stay the same in three months; (b) my financial situation will get better,
get worse, or stay the same in six months; or (c) my financial situation will get better, get
worse, or stay same in one year. Answers were coded as 1 = get better; 2 = get worse; or
3 = stay the same. The timing of receiving a stimulus check was measured nominally as
1 = get stimulus check in April; 2 = get stimulus check in May; 3 = get stimulus check in
June; 4 = get stimulus check in July; 5 = get stimulus check after July; 6 = do not know;
7 = do not want to answer; 8 = had not received stimulus check yet; and 9 = not eligible for
a stimulus check.

5. Results
5.1. Identify the Best Parameters among the Various ML Algorithms

The first step in the ML analyses began by finding the best parameters and tuning the
algorithms. Across the six ML algorithms, various parameters were tested and tuned. The
tuning procedure is shown in Appendix B.

5.2. Results for Step 2: Find the Best ML Prediction Method among the Various ML Algorithms

It was determined that kNN and NN overfit the data somewhat. For example, the
prediction accuracy (AUC) of both algorithms were strong when the models were built;
however, the prediction accuracy was weakened when tested. Gradient Boosting offered
the best performance with categorical consideration and a learning rate of 0.10 (see Table 1).
However, kNN and SVM were still robust. Figure 3 shows the selected algorithms’ ROC
curves from the six ML algorithms.

Table 1. Prediction Accuracy Comparison across ML Algorithms.

ML Selected
Algorithm

Selected
Parameter Training Test

kNN Neighbor = 6 1.000 0.844
Gradient Boosting Categorical L.R. = 0.10 0.988 0.849
Naïve Bayes 0.871 0.818
SVM Sigmoid cost = 0.10 0.836 0.826
SGD Lasso/Ridge L.R. = 0.001 0.919 0.802
NN Neuron = 30 1.000 0.793

Abbreviation: L.R., learning rate.
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5.3. Results for Step 3: Check Whether the Accuracy of the ML Algorithms Is Higher Than the
Accuracy Offered by a Logistic Regression

Table 2 shows the results from the logistic regression. As shown in Table 2, none of
the variables had a significant effect in describing whether a respondent held an emer-
gency fund. However, when the variables were added using a stepwise variable selection
approach, several variables (i.e., savings account, mortgage loan, whole life insurance,
no access to financial advisor, financial course in high school, financial satisfaction, finan-
cial self-efficacy, life satisfaction, number of children, and financial situation during the
COVID-19 pandemic) were observed to be statistically significant.

Table 2. Logistic Regression Results (n = 475, 50% Random Splitting).

Variables Logistic Regression with
All Variables

Logistic Regression with
Forward Stepwise

Logistic Regression with
Backward Stepwise

Coefficient SE Coefficient SE Coefficient SE
Auto loan 0.40 0.46
Student loan −0.61 0.47
Farm loan −0.04 0.80
Equity loan 0.22 0.66
Mortgage loan −1.48 0.51 −0.69 * 0.31
Own house 0.50 0.51
Saving acct. −1.86 0.51 −1.40 *** 0.29 −1.28 *** 0.30
Checking acct. −0.33 0.57
Term L.I. −0.08 0.41
Whole L.I. −1.02 0.51 −0.90 ** 0.33 −0.81 * 0.34
FA do not know −1.27 0.64
FA no −1.82 0.53 −1.12 *** 0.28 −1.14 *** 0.28
Payday loan −0.66 0.56
Health insurance 0.61 0.52
FP Dist. 10 miles 0.49 0.56
FP Dist. 20 miles 1.06 0.61
FP Dist. 50 miles 1.08 0.91
FP Dist. Over 50 1.40 1.19
FP Dist. na −0.21 0.57 −0.70 * 0.29 −0.80 ** 0.30
Fin course in H.S. −0.81 0.45 −1.01 ** 0.29 −0.95 ** 0.30
Fin course in Col. −0.47 0.53
Obj. Fin Knw. −0.08 0.21
Fin R.T. 0.04 0.05
Fin Satisfaction 0.09 0.04 0.07 ** 0.02 0.06 * 0.03
Fin Stress 0.02 0.01
Fin Self-efficacy −0.19 0.06 −0.08 * 0.03
L.O.C. −0.05 0.05
S.W.L.S. 0.08 0.03 0.08 *** 0.02 0.08 *** 0.02
Self-esteem 0.01 0.05
Job insecurity 0.05 0.04
WS Part-time 0.20 0.71
WS Self-empl. 1.31 0.70
WS Homemaker −1.36 1.00
WS Full stud. 0.28 0.82
WS Not working 0.11 0.58
Agri. Work 0.92 1.67
Agri. R.Busi. −0.77 1.02
Agri. No. −0.03 0.90
Ed AA 0.44 0.50
Ed BA 0.93 0.55
Ed Grad. 0.66 0.74
Single 0.22 0.45
Female 0.12 0.41
Age 0.02 0.02
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Table 2. Cont.

Variables Logistic Regression with
All Variables

Logistic Regression with
Forward Stepwise

Logistic Regression with
Backward Stepwise

Suburban 0.42 0.44
Rural 0.95 0.59
Ethn. Hispanic 0.16 0.59
Ethn. Black −0.22 0.52
Ethn. Asian 0.42 0.55
Ethn. Pacific −0.13 1.07
Ethn. Others −0.98 0.87
Inc. 15 k to 25 k −0.71 0.68
Inc. 25 k to 35 k −1.12 0.70
Inc. 35 k to 50 k −1.09 0.73
Inc. 50 k to 75 k −0.27 0.72
Inc. 75 k to 100 k −0.95 0.86
Inc. 100 k to 150 k −1.27 0.85
Inc. > 150 k 1.26 1.27
No. of Child −0.66 0.20 −0.26 * 0.12 −0.27 * 0.12
Hth. Good −0.24 0.49
Hth. Fair −1.17 0.68
Hth. Poor 0.36 1.23
Fin Situation −0.48 0.23 −0.32 * 0.13
H.Situation −0.10 0.26
WB.Situation 0.03 0.28
Work. Situation 0.32 0.26
3 months expect −0.31 0.29
6 months expect 0.14 0.27
1 year expect 0.31 0.25
Stim. May 0.58 0.77
Stim. Jun. −1.24 0.91
Stim. Jul. 0.94 0.99
Stim. Aft. Jul. −0.74 0.66
Stim. Dk −0.72 0.72
Stim. Na −0.62 1.06
Stim. No get −1.10 0.74
Stim. No elig. −0.44 0.81
Constant 8.47 3.90 3.93 *** 1.06 5.28 *** 1.25

R2 0.54 0.41 0.41
F 352.60 264.57 *** 268.99 ***

Note. Reference group for auto loan, student loan, farm loan, equity loan, mortgage loan, own house, saving
account, checking account, term life insurance, whole life insurance, financial course from high school, financial
course from college are those who do not have them; male is the reference group for gender; ever had financial
advice before is the reference group for experience of financial advice; distance to the accessible financial profession
within 5 miles is the reference group for accessibility of financial professionals; full-time working status is the
reference group for working status; working on a farm is the reference group for agriculture working status; high
school or lower degree is the reference group for education level; living in urban area is the reference group for
urban/suburban/rural living; lower than USD 15,000 is the reference group for income level; excellent health
status is the reference group for health status; reference group for stimulus check is receiving stimulus check in
April; the results for region (i.e., states) were omitted because the number of states and territories is too large to
report while the sample size per location is too small. Significance level: * p < 0.1, ** p < 0.05, *** p < 0.01.

Based on a sample size of 477, ROC graphs and AUCs (i.e., predictions made from
the test dataset) are shown in Figure 4. The predictions resembled convex curves. The
upper left ROC was made when all variables were included in the prediction; the lower left
ROC was estimated when backward stepwise was utilized; the right upper ROC was made
when forward stepwise was utilized.
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As shown in Table 3, AUC was under 0.800, which was lower than the ML AUC
predictions. Even the worst performing ML exhibited a better AUC (i.e., 0.793 when ML
was NN) compared to results from the logistic regression models (i.e., 0.754 when the
variable list was determined via backward stepwise variable selection). This means that
conventional analysis is proper when the research goal involves identifying significant
variables; however, when the research goal involves maximizing prediction performance,
ML algorithms provide a more robust insight into behavior (i.e., prediction accuracy can be
maximized using ML techniques).

Table 3. AUC Comparison between ML Algorithms and Logistic Predictions.

ML AUC from Test Logistic Regression AUC from Test

kNN 0.844 With all variables 0.703
Gradient Boosting 0.849 Forward stepwise 0.741
Naïve Bayes 0.818 Backward stepwise 0.754
SVM 0.826
SGD 0.802
NN 0.793

Table 3 indicates that machine learning (ML) offers more (i.e., efficient) predictive per-
formance than a logistic regression methodology. However, this does not necessarily mean
that ML provides a better explanation. As previously explained, ML has the advantage of
making better predictions by including more variables, as it incorporates the covariances
inherent in each variable into a prediction. This means that some important features with
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higher prediction weights are selected based on the covariance with other features. On the
other hand, generalized linear models like logistic regression exclude covariances other
than the unique covariance between an outcome and input variables. Traditional regression
techniques focus on finding precise explanations for individual variables. This ultimately
leads to an increase in explanatory power but a decrease in predictive power. Therefore,
the results shown in Table 3 signify an improvement in the predictive power of ML but do
not necessarily mean that the explanatory power of individual variables has improved.

For example, when looking at Table 2 (i.e., results from the logistic regression), vari-
ables that have a significant relationship with holding an emergency fund are easily iden-
tified. Most of these variables, including a household’s financial situation, number of
children, and holding a savings account, match with what has been reported in the previ-
ous literature. The explanatory power of these variables remains valid. However, Table 4
shows how different variables influenced these predictive performances. When comparing
Tables 2 and 4, it becomes apparent that variables that were significant in Table 2 do not
always have high predictive weights in Table 4. This indicates that in the case of the
important variables shown in Table 4, various variables, as assumed by complex system
science models and ecological system theory, contribute to better predictions. Therefore,
the high predictive power in Table 3 and the variable rankings in Table 4 can play a role in
identifying variables that conventional analyses, such as logistic regression, may overlook
conceptually or theoretically. While ML may provide high predictive power, variables
that were not statistically significant in the logistic regression (e.g., region, education level,
financial self-efficacy, having a financial advisor, and farm loan) should be reconsidered
as potentially important variables based on their high predictive weights, despite being
overlooked in previous studies.
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Table 4. Variable Rankings from Six ML Algorithms.

kNN RF GB RF Naïve Bayes RF SVM RF SGD RF NN RF
Accuracy Rank = 2 Accuracy Rank = 1 Accuracy Rank = 4 Accuracy Rank = 3 Accuracy Rank = 5 Accuracy Rank = 6

1 Region 0.090 Education level 0.110 Fin Self-efficacy 0.075 Fin Course in Col. 0.176 Ever FA 0.128 Fin Course in Col. 0.136
2 Equity loan 0.080 Fin Course in Col. 0.104 Farm loan 0.070 Education level 0.158 Fin Course in Col. 0.108 Farm loan 0.134
3 Farm loan 0.076 Whole L.I. 0.102 Ever FA 0.069 Whole L.I. 0.158 Fin Course in H.S. 0.080 Ever FA 0.117
4 Fin Course in Col. 0.072 Region 0.089 Checking acct. 0.062 Farm loan 0.144 Single 0.078 Equity loan 0.102
5 Fin Course in H.S. 0.070 Ever FA 0.079 Fin Satisfaction 0.057 S.W.L.S. 0.115 Fin Satisfaction 0.074 Whole L.I. 0.088
6 Single 0.064 Farm loan 0.062 Region 0.054 Fin Satisfaction 0.112 Own house 0.072 Student loan 0.086
7 Ever FA. 0.061 Fin Satisfaction 0.061 Saving acct. 0.046 Ever FA 0.109 Gender 0.070 Payday loan 0.082
8 Education level 0.060 Gender 0.056 S.W.L.S. 0.044 Fin Stress 0.101 Farm loan 0.068 Education level 0.080
9 S.W.L.S. 0.054 Single 0.054 Payday loan 0.042 Fin Course in H.S. 0.092 Fin Self-efficacy 0.061 Fin Satisfaction 0.072
10 Payday loan 0.048 Fin Self-efficacy 0.053 Income level 0.040 Payday loan 0.088 S.W.L.S. 0.058 Term L.I. 0.064
11 Term L.I. 0.040 Income level 0.051 Age 0.035 Single 0.088 Fin Stress 0.057 S.W.L.S. 0.055
12 Fin Satisfaction 0.036 Mortgage loan 0.048 1 year expect 0.033 Agri. Work. Type 0.087 Dist. To. FP 0.046 Agri. Work. Type 0.051
13 Mortgage loan 0.034 Fin Stress 0.044 Fin Stress 0.028 Fin Self-efficacy 0.081 Obj. Fin Knw. 0.045 Auto loan 0.048
14 Health status 0.032 Own house 0.042 Education level 0.028 Term L.I. 0.076 Mortgage loan 0.044 Fin Self-efficacy 0.047
15 Fin Situation 0.031 Saving acct. 0.040 Stimulus 0.027 Checking acct. 0.070 Student loan 0.040 Fin Stress 0.046
16 Gender 0.028 Dist. To. FP 0.039 Fin Course in H.S. 0.026 Own house 0.070 Term L.I. 0.040 Saving acct. 0.044
17 Auto loan 0.028 Obj. Fin Knw. 0.035 WB.Situation 0.023 Fin Situation 0.067 Payday loan 0.034 Single 0.038
18 Income level 0.025 Equity loan 0.034 Equity loan 0.022 Health status 0.066 Agri. Work. Type 0.033 Ethnic 0.032
19 Fin Self-efficacy 0.023 6 months expect 0.032 Dist. To. FP 0.021 Work status 0.065 Region 0.033 WB.Situation 0.032
20 H.Situation 0.023 S.W.L.S. 0.031 Work status 0.019 Equity loan 0.064 Job insecurity 0.032 Fin Course in H.S. 0.032
21 Student loan 0.022 Job insecurity 0.031 Agri. Work. Type 0.019 H.Situation 0.059 Equity loan 0.032 Income 0.031
22 1 year expect 0.021 Term L.I. 0.030 L.O.C. 0.019 WB.Situation 0.059 Saving acct. 0.032 Checking acct. 0.030
23 Urban type 0.020 Agri. Work. Type 0.028 Auto loan 0.016 3 months expect 0.055 L.O.C. 0.031 Self-esteem 0.028
24 Agri. Work. Type 0.019 Fin Course in H.S. 0.024 6 months expect 0.016 L.O.C. 0.047 Education level 0.030 Work. Situation 0.026
25 Self-esteem 0.017 Ethnic 0.024 Health status 0.015 Obj. Fin Knw. 0.043 Age 0.030 Region 0.026
26 Fin Stress 0.014 Health status 0.022 Term L.I. 0.014 Work. Situation 0.041 WB.Situation 0.029 Fin Situation 0.023
27 Saving acct. 0.014 Payday loan 0.022 Fin R.T. 0.012 Stimulus 0.040 Income level 0.026 L.O.C. 0.023
28 Job insecurity 0.013 Auto loan 0.022 Obj. Fin Knw. 0.011 Income level 0.040 Self-esteem 0.025 Job insecurity 0.021
29 6 months expect 0.013 H.Situation 0.020 Single 0.010 Health insurance 0.040 Work status 0.024 Gender 0.020
30 Obj. Fin Knw. 0.012 L.O.C. 0.018 Urban 0.010 6 months expect 0.039 Health status 0.023 Mortgage loan 0.016
31 Work status 0.010 Age 0.016 H.Situation 0.010 Job insecurity 0.037 Urban type 0.021 Work status 0.013
32 Age 0.009 1 year expect 0.014 Self-esteem 0.007 Age 0.034 Health insurance 0.016 Age 0.010
33 Ethnic 0.008 Self-esteem 0.012 Fin Situation 0.007 Mortgage loan 0.034 1 year expect 0.015 Health status 0.009
34 Own house 0.006 No. of Child 0.005 Own house 0.006 Self-esteem 0.032 H.Situation 0.014 Fin R.T. 0.008
35 Health insurance 0.006 Fin R.T. 0.005 Job insecurity 0.003 Region 0.031 Fin Situation 0.011 H.Situation 0.008
36 L.O.C. 0.005 Checking acct. 0.004 Work. Situation 0.003 Student loan 0.030 Checking acct. 0.010 3 months expect 0.007
37 Stimulus 0.005 Fin Situation 0.003 Student loan 0.000 Saving acct. 0.028 Fin R.T. 0.009 Dist. To. FP 0.007
38 No. of Child 0.003 Work. Situation 0.000 No. of Child −0.001 Auto loan 0.026 Auto loan 0.008 1 year expect 0.001
39 Whole L.I. 0.000 WB.Situation −0.004 Ethnic −0.009 Dist. To. FP 0.010 Work. Situation 0.008 No. of Child 0.000
40 Fin R.T. −0.002 3 months expect −0.005 3 months expect −0.010 No. of Child 0.009 Stimulus 0.005 Own house 0.000
41 WB. Situation −0.003 Health insurance −0.006 Gender −0.012 1 year expect 0.007 6 months expect 0.004 Obj. Fin Knw. −0.002
42 Checking acct. −0.012 Student loan −0.010 Health insurance −0.014 Gender 0.004 Whole L.I. 0.004 Urban type −0.004
43 3 months expect −0.025 Work status −0.021 Mortgage loan −0.018 Ethnic −0.002 No. of Child −0.004 Stimulus −0.005
44 Work. Situation −0.029 Urban type −0.021 Whole L.I. −0.024 Fin R.T. −0.004 Ethnic −0.013 Health insurance −0.014
45 Dist. To FP. −0.034 Stimulus −0.030 Fin Course in Col. −0.024 Urban type −0.019 3 months expect −0.020 6 months expect −0.017

Abbreviations: Agri. Work. Type, agricultural working status; Dist. To. FP, distance to the financial professionals; Ever FA, ever have financial advice; GB, Gradient Boosting; RF,
RReliefF; other abbreviations are same as shown in Table 2.
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5.4. Results for Step 4: Determine Which Factors Are Associated with Holding an Emergency Fund

Table 4 shows the ranking importance of the best fitting ML algorithm (i.e., Gradient
Boosting) across the variables evaluated in this study (i.e., RReliefF). Education level and
having completed a financial course while in college ranked highly. This implies that
educational attainment is important in helping someone gauge the need for an emergency
fund. In addition, this indicates that promoting financial education, both in formal academic
settings and through specialized courses, can be an effective strategy when encouraging
individuals to (a) recognize the importance of emergency funds and (b) take proactive steps
to establish emergency savings. Policy makers and educators should consider expanding
financial education programs to enhance financial preparedness.

In addition, some financial-related psychological factors (i.e., financial satisfaction,
financial self-efficacy, and financial stress) were found to be important. This implies that
these factors are associated with holding an emergency fund. Financial institutions, finan-
cial service providers, and financial educators should incorporate psychological aspects
into their financial literacy and counseling programs. Fostering financial satisfaction and
self-efficacy while addressing financial stress is likely to help individuals develop positive
emergency fund attitudes and behaviors.

Interestingly, COVID-19-related factors were not particularly important predictors
in the model. This suggests that households are unlikely to change their emergency
fund saving behavior even in the context of situational influences like a challenging
economic situation.

Although Gradient Boosting was deemed to be the best model, the other ML algo-
rithms produced comparable results. For instance, owning whole life insurance was an
important variable when describing who holds an emergency fund across the model. This
indicates that those who own whole life insurance are more concerned about their future
self and the financial welfare of other household members (i.e., individuals who own life
insurance generally exhibit a heightened awareness of their long-term financial security and
the financial well-being of their family). Financial service providers can use this insight to
emphasize the importance of comprehensive financial planning, including both insurance
and emergency fund considerations. Similarly, educational factors (i.e., education level,
completing a financial course in high school, or a financial course while in college) were
found to be important predictors across the ML algorithms.

The ML results differed in significant ways from the logistic regression estimates.
Compared to the Gradient Boosting model, taking a financial course in college and financial
stress were unimportant in the logistic regression. Even so, there were some similarities.
For instance, owning whole life insurance, taking a financial course in high school, and
financial satisfaction ranked highly across the models. This indicates theoretical connec-
tions between these variables and holding an emergency fund. This study illustrates that
combining insights from different analytical approaches can lead to a more comprehensive
understanding and effective promotion of emergency fund savings.

6. Discussion

ML and big data analytical techniques have, over the past decade, garnered increasing
attention among researchers, educators, and policy makers as a way to obtain deeper
insight into social science phenomena. This study adds to the growing consumer studies
methodological literature by illustrating how ML techniques can be applied to assess-
ing household consumer attitudes and behaviors and how ML methods can improve
prediction rates.

The outcome variable in this study was whether a household held an emergency fund,
which was used to indicate a household’s degree of financial preparedness. The existing
financial ratio literature is relatively consistent in reporting that those who hold emergency
savings share a common demographic profile [3,4]. They tend to have high income, are
more educated, and have greater wealth. It is important to note, however, that nearly
all profiles reported in the literature were constructed using traditional methodologies,
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primarily regression techniques. At the outset of this paper, it was hypothesized that
while existing profiles may remain valid, other variables might also be influential in
describing who does and does not hold emergency savings. Traditional regression modeling
techniques do not account for hidden layers between and among variables. While it is
possible to create moderation and mediation models, to do so with large data is nearly
impossible when the constraints associated with regression modeling are applied. This
study’s methodological approach dealt with this issue by showing that when prediction
or profiling is the main purpose of a study, ML algorithms can provide a more nuanced
insight into consumer behavior compared to more commonly used statistical analysis
techniques [7,16].

This study compared and tested several ML algorithms to determine which offers
the most robust prediction rate. The ML algorithm outputs were compared to estimates
derived from logistic regression models. Several takeaways emerged from these analyses.
First, those using ML techniques must know that parameter tuning is not optional. Incor-
rect parameter tuning results in lowered prediction and classification rates. Those who
adopt ML algorithms in consumer studies should consider this point and compare tuning
performance when conceptualizing studies. Second, sub-algorithms should be considered.
Using an incorrect sub-algorithm will almost always lower prediction and classification
validity. Third, when evaluating ML algorithm outputs, it is important to remember that
ML algorithms do not show marginal effects. Instead, ML algorithms provide a ranked
ordering of predictors. As such, the interpretation of an ML analysis should not be consid-
ered deterministic. Instead, the interpretation of an ML output needs to be conceptualized
as more in line with an explorative introduction.

In this study, Gradient Boosting, kNN, and SVM were found to provide the most robust
degrees of prediction and classification. Gradient Boosting offered the best prediction
rate, which aligns with what others have reported in the literature (e.g., [9,10,15,44]).
Gradient boosting is an ensemble modeling technique that integrates classification and
regression methods [42,43]. The ensemble of classification and regression estimation
works well when optimizing prediction accuracy [31] and minimizing error levels [44].
What is particularly interesting in this study is that income and wealth—factors generally
considered the most descriptive of financial preparedness—were not highly ranked in
the Gradient Boosting algorithm, nor with kNN or SVM. This insight differs from what is
generally shown using regression techniques [3]. However, educational factors and the
existence of financial obligations were more important. It appears that a consumer must
possess the financial literacy to anticipate the need for emergency savings, formulate a
plan to build an emergency fund, and implement the plan. The consumer must also have
an objective reason to hold emergency fund assets. The existence of loans is one reason a
consumer may opt to hold assets in an emergency fund. Likewise, a consumer needs to
hold an attitudinal disposition that values one’s future self or the well-being of household
members. The consistently high ranking of life insurance in the ML algorithms suggests
that the ability to plan for the future is an important characteristic among those holding
emergency fund assets. The region variable in the kNN model is worthy of future research.
The variable represents the state where a respondent resided at the time of the survey. It
appears that some consumers are more likely than others to take financial preparedness
steps. Specifically, those living in rural areas who also hold existing debt, are predicted to
be more likely to hold an emergency fund.

This study represents a noteworthy advancement in consumer studies literature,
particularly in the domains of personal finance and financial planning. This paper illustrates
the value of ML techniques when predicting behavior. While numerous researchers have
utilized ML methodologies with social science datasets (e.g., [9–15]), these efforts have
sometimes suffered from limitations, such as their inability to comprehensively compare
diverse ML methods or their focus on non-household factors. This means that the practical
relevance of findings about household financial management has notable limitations. This
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paper is one of the few studies to comprehensively analyze the nuances associated with
holding an emergency fund at the household level.

Another significant contribution of this paper is the expanded scope of variables
that were used to predict holding an emergency fund. Rather than rely on a limited set
of preexisting variables as described in the literature (i.e., primarily financial factors and
sociodemographic attributes) (e.g., [3,4]), this study introduced a broader range of variables,
including financial education, psychological aspects, COVID-19-related factors, distance to
financial service providers, and holding various types of loans. This approach aligns well
with ML’s capacity to leverage multiple variables [16], potentially unveiling overlooked
variables that could significantly contribute to understanding the dynamics of emergency
fund management.

Moreover, this study departs from the prevailing practice of assuming linear relation-
ships between and among variables. The ML technique uses a pattern recognition and
classification approach, making it possible to move beyond traditional linear assumptions.
To achieve this, six distinct ML algorithms were employed as complex systems science
models. The application of these algorithms allowed for a comprehensive investigation
of the potential contributions of ML to the field of consumer studies. Notably, each ML
algorithm underwent meticulous parameter tuning and calibration, extending beyond
algorithmic utilization to demonstrate the application of ML techniques to address complex
questions. The comprehensive approach in this study underscores the commitment to
advancing the understanding of emergency fund management dynamics and enhancing
the practical applicability of ML in consumer studies.

In summary, the results from this study advance the methodological body of literature
for those working in the consumer studies field. This study shows that ML algorithms can
be used to improve predictions and classifications of consumer attitudes and behaviors.
Future research should align the results from this study with existing models and profiles
of those who hold emergency savings. Information from such studies can be used by
financial educators, consumer advocates, and policy makers when helping households
achieve greater levels of financial preparedness.

7. Conclusions

This study is noteworthy in making significant theoretical, practical, and methodologi-
cal contributions to consumer studies. The theoretical contribution lies in its application of
ML techniques to the study of household financial decision making. Unlike traditional lin-
ear models, this study used a pattern recognition and classification methodology, shedding
light on the intricate complexities underlying emergency fund management. The findings
from this study challenge conventional beliefs by highlighting the importance of financial
literacy, financial obligations, and a positive attitude towards future financial well-being as
key factors in predicting who is more likely to hold emergency savings, with income and
wealth taking a secondary role.

On a practical level, findings from this study underscore the critical importance of
parameter tuning and sub-algorithm selection when employing ML techniques in con-
sumer studies. This paper offers valuable insights into the use of ML algorithms when
predicting and classifying consumer attitudes and behaviors, which can have direct appli-
cations for financial service providers, financial educators, consumer advocates, and policy
makers. Moreover, this study expands the spectrum of variables considered, incorporating
financial education, psychological factors, COVID-19-related variables, and others, thereby
enhancing the predictive capacity of models to understand the dynamics of emergency
fund management.

Even in the context of these significant contributions, limitations need to be acknowl-
edged. ML techniques, while improving prediction rates, do not readily provide straight-
forward marginal effects. Thus, some researchers use ML algorithms as a starting point in
identifying key variables for use in secondary models. While this study evaluated six robust
ML algorithms, including Gradient Boosting, kNN, and SVM, further research is needed



Mathematics 2024, 12, 182 25 of 38

to determine when one particular approach should be used to address a specific research
question. Further advanced ML algorithms, such as Generative Adversarial Network, Re-
current Neural Network, or Convolutional Neural Network, should be evaluated in future
studies. In the context of this study, additional research is needed to decipher regional
variations in holding an emergency fund. Future studies should also aim to integrate the
findings with existing models and profiles of emergency savings holders. Doing so will
contribute to a better understanding of the financial preparedness of households. In addi-
tion, the current ML algorithms are all well-known algorithms. Even in the context of these
limitations and opportunities for future work, this study advances the consumer studies
methodological landscape by showcasing how ML techniques can enrich the field’s compre-
hension of consumer attitudes and behaviors, particularly within the context of holding an
emergency fund.
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Appendix A

Table A1. Descriptive Table (N = 987).

Category Variable Frequency Percentage Mean SD

Outcome Em. Fund (=Have) 538 54.51%

Financial
Factors

Auto loan (=Have) 355 35.97%
Student loan (=Have) 307 31.10%
Farm loan (=Have) 156 15.81%
Equity loan (=Have) 181 18.34%
Mortgage loan (=Have) 320 32.42%
Own house 487 49.34%
Saving acct. 650 65.86%
Checking acct. 807 81.76%
Term L.I. 418 42.35%
Whole L.I. 289 29.28%
FA have 330 33.43%
FA do not know 143 14.19%
FA no 514 52.08%
Payday loan 274 27.76%
Health insurance 776 78.62%
FP Dist. 5 miles 216 21.88%
FP Dist. 10 miles 229 22.29%
FP Dist. 20 miles 140 14.18%
FP Dist. 50 miles 67 6.79%
FP Dist. Over 50 44 4.46%
FP Dist. na 300 30.40%

Financial
Education

Fin course in H.S. (=Have) 363 36.78%
Fin course in Col. (=Have) 296 29.99%
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Table A1. Cont.

Category Variable Frequency Percentage Mean SD

Obj. Fin Knw. 1.56 1.00

Psych.
Factors

Fin R.T. 22.70 4.71
Fin Satisfaction 22.54 7.31
Fin Stress 66.95 27.71
Fin Self-efficacy 15.59 5.22
L.O.C. 18.57 6.27
S.W.L.S. 21.56 8.73
Self-esteem 28.38 5.05
Job insecurity 19.69 4.55

Demo.
Factors

WS Full-time 396 40.12%
WS Part-time 93 9.42%
WS Self-empl. 80 8.11%
WS Homemaker 59 5.98%
WS Full stud. 78 7.90%
WS Not working 281 28.47%
Agri. Farm 113 11.45%
Agri. Ranch 21 2.13%
Agri. R.Busi 66 6.69%
Agri. No 787 79.74%
Ed High 279 28.27%
Ed AA 269 27.25%
Ed BA 269 27.25%
Ed Grad. 170 17.22%
Single 503 50.96%
Female 501 50.76%
Age 38.86 15.29
Urban 419 42.45%
Suburban 396 40.12%
Rural 172 17.43%
Ethn. White 357 36.17%
Ethn. Hispanic 135 13.68%
Ethn. Black 250 25.33%
Ethn. Asian 149 15.10%
Ethn. Pacific 38 3.85%
Ethn. Others 58 5.88%
Inc. < 15 k 175 17.73%
Inc. 15 k to 25 k 118 11.96%
Inc. 25 k to 35 k 138 13.98%
Inc. 35 k to 50 k 127 12.87%
Inc. 50 k to 75 k 148 14.99%
Inc. 75 k to 100 k 98 9.93%
Inc. 100 k to 150 k 110 11.14%
Inc. > 150 k 73 7.40%
No. of Child 0.74 1.08
Hth. Excellent 280 28.37%
Hth. Good 468 47.42%
Hth. Fair 190 19.25%
Hth. Poor 49 4.96%
Region - -
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Table A1. Cont.

Category Variable Frequency Percentage Mean SD

C-19 Factors

Fin Situation 2.33 1.08
H.Situation 2.00 1.05
WB.Situation 2.29 1.07
Work. Situation 2.27 1.09
3 months expect 2.06 0.90
6 months expect 1.91 0.89
1 year expect 1.72 0.88
Stim. Apr. 164 16.62%
Stim. May. 101 10.23%
Stim. Jun. 78 7.90%
Stim. Jul. 61 6.18%
Stim. Aft. Jul. 159 16.11%
Stim. Dk 133 13.48%
Stim. Na 39 3.95%
Stim. No get 129 13.07%
Stim. Not elig. 123 12.46%

Abbreviation: Em. Fund, emergency fund; acct., account; L.I., life insurance; FA have, ever have financial advice;
FA do not know, not knowing whether have financial advice; FA no, never have financial advice; FP Dist. 5 miles,
financial professionals are accessible within 5 miles; FP Dist. 10 miles, financial professionals are accessible within
10 miles; FP Dist. 20 miles, financial professionals are accessible within 20 miles; FP Dist. 50 miles, financial
professionals are accessible within 50 miles; FP Dist. Over 50, financial professionals are accessible over 50 miles;
FP Dist. na, the accessibility of financial professionals is not known; Fin course in H.S., financial course from
high school; Fin course in Col., financial course from college; Obj. Fin Knw., objective financial knowledge; Psych.
Factors, psychological factors; Fin R.T., financial risk tolerance; Fin Satisfaction, financial satisfaction; Fin Stress,
financial stress; Fin Self-efficacy, financial self-efficacy; L.O.C., locus of control; S.W.L.S., satisfaction with life scale;
Demo., demographic; WS Full-time, working status as full-time worker; WS Part-time, working status as part-time
worker; WS Self-empl., working status as self-employed; WS Homemaker, working status as homemaker; WS Full
stud., working status as full- time student; WS Not working, working status as not working; Agri. Farm, working
in agriculture as farm worker; Agri. Ranch, working in agriculture as ranch worker; Agri. R.Busi., working in
agriculture as rural business; Agri. No., not working in agriculture; Ed High, education level as high school or
lower; Ed AA, some college with associate degree; Ed BA, college with Bachelors’ degree; Ed Grad., education
level as graduate or higher degree; Ethn. White, ethnic group as White or Caucasian; Ethn. Hispanic, ethnic group
as Hispanic or Latino(a); Ethn. Black, ethnic group as black or African American; Ethn. Asian, ethnic group as
Asian; Ethn. Pacific, ethnic group as Pacific Islander, Native American, or Alaskan Native; Ethn. Others, ethnic
group as others; Inc. < 15 k, income level as lower than USD 15,000; Inc. 15 k to 25 k, income level between
USD 15,000 and USD 25,000; Inc. 25 k to 35 k, income level between USD 25,000 and USD 35,000; Inc. 35 k to
50 k, income level between USD 35,000 and USD 50,000; Inc. 50 k to 75 k, income level between USD 50,000 and
USD 75,000; Inc. 75 k to 100 k, income level between USD 75,000 and USD 100,000; Inc. 100 k to 150 k, income
level between USD 100,000 and USD 150,000; Inc. > 150 k, income level over USD 150,000; # Child, number
of children in a household; Hth Excellent, health status as excellent health status; Hth Good, health status as
good health status; Hth Fair, health status as fair health status; Hth Poor, health status as poor health status;
C-19 Factors, COVID-19 factors; Fin Situation, the financial situation affected by COVID-19; H.Situation, the
health situation affected by COVID-19; WB.Situation, general well-being affected by COVID-19; Work. Situation,
work-balance affected by COVID-19; 3 months expect, the expected financial situation in 3 months; 6 months
expect, the expected financial situation in 6 months; 1 year expect, the expected financial situation in 1 year; Stim.
Apr., getting stimulus check in April; Stim. May., getting stimulus check in May; Stim. Jun., getting stimulus
check in June; Stim. Jul., getting stimulus check in July; Stim. Aft. Jul., getting stimulus check after July; Stim. Dk,
do not know whether get stimulus check or not; Stim. Na, do not want to answer; Stim. No get, the respondent
did not get stimulus check; Stim. Not elig., the respondent is not eligible to get stimulus check.

Appendix B

ML Tuning: Identify the Best Parameters among the Various ML Algorithms
Tables A2–A7 and Figures A1–A6 show each ML algorithm’s accuracy given the

constraints of each algorithm’s settings. In the case of kNN, both the Euclidean and
Manhattan models showed robust predictions in the training dataset. However, when the
models were checked using the test dataset, the Manhattan distance algorithm exhibited a
better prediction rate. Regarding parameter tuning, the Manhattan model showed the best
performance when there were three to eight neighbors. It was determined that the best
parameter distance was six (6).
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Table A2. Algorithm and Parameter Selection—kNN.

Training Test
Number of Euclidean Manhattan Euclidean Manhattan
Neighbors AUC AUC AUC AUC

1 1.000 1.000 0.686 0.835
2 1.000 1.000 0.742 0.834
3 1.000 1.000 0.754 0.840
4 1.000 1.000 0.775 0.840
5 1.000 1.000 0.779 0.840
6 1.000 1.000 0.785 0.844
7 1.000 1.000 0.786 0.838
8 1.000 1.000 0.786 0.842
9 1.000 1.000 0.786 0.838
10 1.000 1.000 0.794 0.836
20 1.000 1.000 0.809 0.828
30 1.000 1.000 0.810 0.825
40 1.000 1.000 0.807 0.818
50 1.000 1.000 0.811 0.809
60 1.000 1.000 0.802 0.806
70 1.000 1.000 0.803 0.799
80 1.000 1.000 0.801 0.776
90 1.000 1.000 0.799 0.708
100 1.000 1.000 0.795 0.834

Note. AUC represents the prediction accuracy of the model. AUC ranges in value from 0.00 to 1.00, and the higher
the AUC, the better the model predicts. Abbreviation: AUC, area under the curve.

Figure A1 shows the representative ROC curves for kNN. The upper left graph is
the ROC graph for the Euclidean model with 30 neighbors; the left lower graph is the
ROC graph for the Euclidean model with 50 neighbors; the right upper graph is the ROC
graph for Manhattan model with six neighbors; the lower right graph is the ROC graph for
Manhattan model with eight neighbors. The dark section under the curve is the area used
to calculate AUC. As shown in Figure A1, the ROC curves were convex, indicating that
kNN performed well in prediction. The AUC was maximized when kNN was performed
using the Manhattan model with six neighbors.

In the case of Gradient Boosting, the four sub-algorithms exhibited prediction robust-
ness with the training dataset. However, when the algorithms were checked using the
test dataset, categorical Gradient Boosting showed better prediction. Regarding parameter
tuning, categorical Gradient Boosting showed the best performance when the learning rate
was 0.10, as shown in Table A3.

Table A3. Algorithm and Parameter Selection—Gradient Boosting.

Training Test
Cat. Ext. Ext. RF Scikit Cat. Ext. Ext. RF Scikit

L.R. AUC AUC AUC AUC AUC AUC AUC AUC

0.10 0.988 1.000 1.000 0.968 0.849 0.842 0.842 0.836
0.15 1.000 1.000 1.000 0.981 0.835 0.840 0.840 0.838
0.20 0.998 1.000 1.000 0.985 0.827 0.840 0.840 0.842
0.25 1.000 1.000 1.000 0.991 0.838 0.834 0.834 0.833
0.30 0.999 1.000 1.000 0.994 0.833 0.838 0.838 0.829

Abbreviation: Cat., Categorical Gradient Boosting; Ext., Extreme Gradient Boosting; Ext. RF, Extreme Gradient
Boosting with random forest; L.R., learning rate; Scikit, Scikit version of Gradient Boosting.
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Figure A1. ROC Curves for Algorithm and Parameter Selection—kNN.

Figure A2 shows the representative ROC curves for the Gradient Boosting algorithms.
The upper left graph is the ROC illustration for Categorical Gradient Boosting with a
learning rate of 0.10; the left lower graph is the ROC graph for Extreme Gradient Boosting
with a learning rate of 0.10; the right upper graph is the ROC graph for Extreme Gradient
Boosting with random forest with a learning rate of 0.10; the lower right graph is the ROC
graph for Scikit Gradient Boosting with a learning rate of 0.10. AUC was calculated using
the dark area under the curve. As shown in Figure A2, the ROC curves were convex,
suggesting that prediction was robust with Gradient Boosting. The AUC was the largest
when Categorical Gradient Boosting was performed with a learning rate of 0.10.
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There are no comparable sub-algorithms and parameter tuning estimates in the case
of Naïve Bayes. Table A4 and Figure A3 show the Naïve Bayes’ AUC and ROC curves. The
dark area under the curve is the area used to estimate AUC.

Table A4. Algorithm and Parameter Selection—Naïve Bayes.

Training Test
AUC AUC

0.871 0.818
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Table A5 shows the Support Vector Machine (SVM) algorithm accuracy. In the case
of SVM, the Radial Basis Function (RBF) kernel model exhibited the best prediction with
the training dataset. As an optimal parameter setting, the cost was set between 5 and 100.
However, when the algorithm was checked using the test dataset, optimal performance by
RBF was overfit (i.e., better performance in training but worse performance when tested). It
was determined that the sigmoid model was better in terms of prediction (i.e., the outcomes
were similar between the training (0.836) and the test (0.826) datasets). The sigmoid
kernel model with cost = 0.10 showed stable prediction (i.e., no overfitting issue) and
optimal performance.

Table A5. Algorithm and Parameter Selection—SVM.

Training Test
Linear Poly. RBF Sigmoid Linear Poly. RBF Sigmoid

c AUC AUC AUC AUC AUC AUC AUC AUC

0.10 0.584 0.944 0.901 0.836 0.442 0.822 0.812 0.826
1.00 0.754 0.982 0.969 0.774 0.719 0.778 0.825 0.773
5.00 0.754 0.977 0.997 0.769 0.720 0.762 0.784 0.747
10.00 0.754 0.977 0.996 0.765 0.720 0.762 0.803 0.738
50.00 0.754 0.977 0.996 0.759 0.720 0.762 0.803 0.733
100.00 0.754 0.977 0.996 0.754 0.280 0.762 0.803 0.729

Abbreviation: c, cost; Linear, SVM with linear kernel; Poly., SVM with polynomial kernel; RBF, SVM with radial
based function kernel; Sigmoid, SVM with sigmoid kernel.

Figure A4 shows the representative ROC curves for SVM. The upper left graph is the
ROC graph for the linear SVM with a cost of 0.10; the left lower graph is the ROC graph for
the polynomial SVM with a cost of 0.10; the right upper graph is the ROC graph for the
RBF SVM with a cost of 0.10; the lower right graph is the ROC graph for the sigmoid SVM
with a cost of 0.10. The dark area under the curve was used to calculate AUC. As shown in
Figure A4, the ROC curves were convex, indicating that three of the SVMs performed well
in prediction. When SVM was performed using a linear assumption, the prediction was
suboptimal, as indicated by the concave graph. The AUC was optimized when SVM was
performed with sigmoid with a cost of 0.10.
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In the Stochastic Gradient Descent (SGD) shown in Table A6, reasonably good pre-
diction rates were observed under three assumptions in the training dataset with learning
rates of 0.001 and 0.005. However, when the algorithms were checked, the learning rate of
0.001 showed the best level of prediction. The type of assumption used when modeling did
not lead to significant differences between the models as long as the learning rate remained
at 0.001.

Table A6. Algorithm and Parameter Selection—SGD.

Training Test
Elastic Lasso Ridge Elastic Lasso Ridge

L.R. AUC AUC AUC AUC AUC AUC

0.001 0.919 0.919 0.919 0.801 0.802 0.802
0.005 0.924 0.924 0.924 0.790 0.786 0.785
0.010 0.923 0.922 0.922 0.778 0.780 0.787
0.050 0.896 0.896 0.895 0.713 0.759 0.770
0.100 0.870 0.890 0.877 0.759 0.774 0.659

Abbreviation: L.R., learning rate.
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Figure A5 shows the representative ROC curves for SGD. The upper left graph is the
ROC graph for lasso SGD with a learning rate of 0.001; the left lower graph is the ROC
graph for ridge SGD with a learning rate of 0.001; the right upper graph is the ROC graph
for lasso SGD with a learning rate of 0.05; the lower right graph is the ROC graph for elastic
SGD with a learning rate of 0.001. As with the other analyses, the dark area under the
curve was used to calculate AUC. As shown in Figure A5, the ROC curves were convex,
indicating that each SGD performed well in prediction. The AUC was the largest when
SGD was performed, with lasso/ridge with a learning rate of 0.001.
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The best NN algorithm was identified in the training dataset when the number of
neurons was over 15. However, in the test dataset, NN showed the best performance when
the number of neurons was 30, 35, 55, and 60. The optimal number of neurons, as shown in
Table A7, was 30.

Figure A6 shows the representative ROC curves for NN. The upper left graph is the
ROC graph for NN with one neuron; the left lower graph is the ROC graph for NN with
50 neurons; the right upper graph is the ROC graph for NN with 30 neurons; the lower right
graph is the ROC graph for NN with 100 neurons. AUC was estimated by examining the
dark area under the curve. As shown in Figure A6, the ROC curves were convex, indicating
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that the NN algorithms performed well in prediction. The AUC was the largest when NN
was performed with 30 neurons.
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Table A7. Algorithm and Parameter Selection—NN.

Number of
Neuron

Training Test
AUC AUC

1 0.843 0.720
5 0.958 0.791
10 0.994 0.781
15 1.000 0.790
20 1.000 0.779
25 1.000 0.779
30 1.000 0.799
35 1.000 0.786
40 1.000 0.783
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Table A7. Cont.

Number of
Neuron

Training Test
AUC AUC

45 1.000 0.776
50 1.000 0.776
55 1.000 0.793
60 1.000 0.781
65 1.000 0.787
70 1.000 0.780
75 1.000 0.768
80 1.000 0.785
85 1.000 0.783
90 1.000 0.780
95 1.000 0.790
100 1.000 0.787
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